Commenti Recenti

sabato 30 agosto 2014

The Una-flow Steam-engine (1912)

L’autore del libro, Johannes Stumpf, descrive il principio di funzionamento, i dettagli costruttivi e le prestazioni di motori alternativi a pistone alimentati a vapore dotati di luce di scarico fissa posizionata sul cilindro.
La lettura del libro offre un tuffo nel passato, si percepisce da un lato l’entusiasmo dello scrittore/inventore e dall’altro le difficoltà per far conoscere e accettare questa tecnologia.
Di seguito il link a un archivio web in cui è possibile leggerlo ed eventualmente anche scaricarlo sul proprio computer

https://archive.org/details/unaflowsteameng00stumgoog

Segue la traduzione in italiano della prefazione e dell'indice dei contenuti.


PREFAZIONE
Tutte le nuove dottrine sono viste con sospetto fino al momento in cui qualche mente indagatrice scopre che non c'è davvero nulla di fondamentalmente nuovo in esse. I principi su cui si basano le dottrine si dimostrano essere vecchi, ma resta il fatto che l'applicazione dei principi è nuova. Nel caso del motore a flusso unidirezionale, o come è stato chiamato per brevità, il motore "una-flow", le osservazioni di cui sopra si applicano completamente. Dopo il successo delle prove con i miei vari disegni di motore una-flow, amici e critici sono stati molto pronti e gentile nel sottolineare che "qualcosa di molto simile è stato fatto prima". Il grande punto è che nulla di esattamente identico è stato fatto e nessuno dei tentativi precedenti sono stati seguiti da qualcosa come il successo pratico, che ha ottenuto la mia introduzione del motore una-flow di circa tre anni fa.

Tra i precedenti tentativi, la preferenza dovrebbe eventualmente essere data al signor J.L. Todd, che ha ottenuto non solo numerosi brevetti in Gran Bretagna per i suoi miglioramenti, ma ha fatto test reali con il suo motore. E 'interessante notare le linee di sviluppo che seguì il signor Todd. Egli ha iniziato con il suo primo brevetto britannico n °7301 del 1885, con una dichiarazione molto chiara delle condizioni termiche prevalenti in un cilindro del motore quando l'entrata è alle estremità e le luci di scarico disposte al centro del cilindro e controllate dal pistone. Le caratteristiche che ha sottolineato erano l'ingresso "caldo" e lo scarico "a freddo". Dal buon inizio della sua indagine, Todd ha mostrato la tendenza a muoversi lungo linee sbagliate. Egli suggerisce che l'eccessiva compressione sarà minimizzata cedendo calore alle pareti del cilindro in fase di compressione e che per svolgere questa funzione si deduce che le pareti non dovrebbero essere incamiciate. Infatti J.L. Todd si spinse fino a riscaldare l’estremità fredda invece della estremità calda mettendo un camicia di vapore in prossimità del collettore di scarico. Questi suggerimenti mostrano l'errore iniziale che fece Todd, e fu probabilmente questo errore iniziale che ha portato Todd a discostarsi dal motore una-flow puro e passare a quello che ha definito il motore di scarico "doppio", cioè il motore misto controcorrente e una-flow.

Il test su locomotiva reale è stato fatto con il motore di Todd a doppio scarico "doppio" e non con il tipo una-flow puro. Un altro punto importante da tenere a mente è che sono trascorsi una decina d'anni tra la prima proposta di Todd e la ricerca del motore di una-flow e la sua introduzione del motore a doppio scarico. Sembrerebbe quindi che Todd si era prima impegnato duramente con l'una-flow puro per poi abbandonarlo a favore dello scarico "doppio". Non sono a conoscenza che il motore a doppio scarico sia stato impiegato estensivamente.

Molti altri inventori sembrano essere stati affascinati dalla versione a flusso unidirezionale, ma sento di dover citare solo il Dr. Wilhelm Schmidt di Wilhelmshoehe. Il dottor Schmidt non sembra essere andato avanti quanto Todd. Come il Sig. Todd, il Dr. Schmidt propone di immettere il vapore ad un'estremità del cilindro e di scaricarlo attraverso porte controllate dal pistone. Ha fatto alcune proposte che possono difficilmente essere prese come serie e pratiche, ma che altrimenti avrebbero potuto essere interessanti. Ad esempio, si propone un motore con valvola automatica la cui funzione di strozzamento dipende dalla variazione velocità del pistone. Di nuovo, non sempre rispetta l'uso del collettore di scarico anulare freddo che collega le larghe aperture del cilindro del motore. Questo è un fattore importante in tutto il motore “una-flow”. Todd era più avanti del Dr. Schmidt a questo riguardo. Infatti in base alle informazioni raccolte da prove pratiche effettuate con i motori “una-flow” secondo il mio design, sembrerebbe che Todd, anche se non ha mai ottenuto grande successo, stava lavorando su linee più corrette del Dr. Schmidt.

Devo ringraziare i miei critici per avermi indicato il lavoro di questi inventori e ricercatori, ma ci tengo ad affermare che le mie indagini erano del tutto indipendenti. Probabilmente se mi fossi informato approfonditamente sul lavoro svolto da questi signori, avrei potuto anche esser fuorviato. Le mie indagini, però, sono avvenute senza condizionamenti.

Vorrei ora indicare brevemente le linee da me seguite nelle mie indagini. Ho deciso di fare in un cilindro di ciò che di solito è fatto in diversi cilindri e ho deciso di farlo alla maniera di una turbina a vapore, il vapore entra caldo da una parte e subisce l’estrazione della sua energia nel passaggio assiale, sempre nella stessa direzione, fino allo scarico freddo. Affrontare il problema in questo senso ha portato alle forme di motore una-flow descritte nelle pagine di questo libro. Essa ha portato ai seguenti principi fondamentali: - taglio del vapore precoce, uso di un grande rapporto di espansione - mantenere calda l’estremità calda - e mantenere fredda l’estremità fredda. Non mi sono allontanato dal primo principio e di fatto sono stato sempre più convinto della sua validità quando confermato dai suoi prevedibili limiti. I miei vari disegni hanno tutti come obiettivo principale quello di soddisfare queste condizioni di base nel modo più completo possibile.

Quali sono i fatti riguardanti il motore una-flow? In breve questi. – Io faccio in un cilindro una-flow, quello che gli altri fanno in due o tre cilindri a contro-flusso (composto o triplo). I risultati in consumo di vapore sono gli stessi, se non migliori. I costi di costruzione e di lubrificazione del motore una-flow sono molto inferiori.

Esporre le idee è una cosa - convincere gli altri in misura sufficiente per realizzare le proprie idee è una cosa completamente diversa e molto più difficile. Il mio ringraziamento va a Mr.Smetana, direttore dell’Ersten Brünner Maschinenfabrik di Brünn per essere stato il primo a convincersi di passare all'azione. Cito proprio la risposta di questo signore alle mie affermazioni "I tuoi argomenti sono buoni - non posso negarlo - perciò mi offro per metterli alla prova".

Quindi, il primo motore una-flow è stato costruito dalla Erste Brünner Maschinenfabrikgesellschaft a Brünn (Austria), secondo il mio disegno. Esso è stato un pieno successo e aveva un consumo di vapore pari a quello di un buon motore composto.

La prima locomotiva una-flow è stata costruita dal KolomnaerMaschinenbau-A.-G., su ordine di Mr.Noltein, il noto direttore delle ferrovie Kazan di Mosca e si dimostrò ampiamente soddisfacente. Da quando è stato introdotto, non ho più avuto motivo di lamentarmi della lentezza dei progressi. Infatti, alla fine del luglio 1911, erano presenti motori già operativi o in costruzione per una potenza totale di oltre mezzo milione di cavalli.

Questo rapido sviluppo ha richiesto una grande mole di lavoro per adattare il motore una-flow per tutti i tipi di utilizzo. Sono debitore verso i miei collaboratori per l’aiuto nel portare avanti questo lavoro e vorrei anche menzionare specialmente Mr.Rösler di Mülhausen in Alsazia, Mr.Arendt di Saarbrücken e Mr.Bonin di Charlottenburg, i quali mi hanno fornito un valido sostegno e per il quale io li ringrazio.

Desidero anche esprimere il mio ringraziamento a tutti quei signori che si sono lasciati convincere di passare all'azione. Oltre a Mr.Smetana che ho già nominato, devo ringraziare Mr.Noltein delle ferrovie Kazan di Mosca, Mr.Hnevkovsky di Brünn, Mr.Lamey di Mülhausen, Geheimrat Müller di Berlino e Mr.Schüler di Grevenbroich, per la loro assistenza e sostegno nelle prime fasi di sviluppo del motore una-flow.

Devo infine ringraziare Mr.P.S.H. Alexander del Messers Mathys & Co., al 43 di Chancery Lane, Londra per i suoi servizi nella traduzione e preparazione di questo lavoro in inglese.

Charlottenburg, Germania.


INDICE DEI CONTENUTI

Prefazione
Capitolo I. Le caratteristiche termiche e costruttive generali del motore a vapore una-flow
Capitolo II. Il rapporto fra il motore una-flow e il condensatore
Capitolo III. La camicia di vapore
Capitolo IV. La prevenzione dei trafilamenti
Capitolo V. La perdita dovuta alle superfici di lavaggio
Capitolo VI. Motore una-flow fisso
Capitolo VII. Il motore una-flow, in combinazione con apparati accessori a vapore
Capitolo VIII. Motore una-flow per locomotiva
Capitolo IX. L’influenza del volume di lavaggio sul consumo di vapore
Capitolo X. Motore una-flow portabile
Capitolo XI. Motore una-flow per laminatoio
Capitolo XII. Motore una-flow per bobinatura
Capitolo XIII. Motore una-flow per pilotare compressori, soffiatori, pompe; compressori e soffiatori una-flow
Capitolo XIV. Motore una-flow per pilotare stampe e presse
Capitolo XV. Motore una-flow marino
Conclusioni

Nessun commento:

Posta un commento

Puoi scrivere qui eventuali richieste di chiarimenti, perplessità o il tuo parere su quanto esposto / Please, write here questions, doubts or your opinion on the post

INDICE DEI CONTENUTI

I. GENERAZIONE DI ENERGIA ELETTRICA
30. Considerazioni sulla generazione elettrica
90. Analisi economica sulla cogenerazione domestica
26. L'alternatore lineare

II. GAS IDEALI: DALLE TRASFORMAZIONI AI MOTORI
1. L'equazione di stato dei gas perfetti: istruzioni per l'uso
3. P·V=n·R·T: considerazioni laterali
13. La trasformazione isocora
14. La trasformazione isoterma
15. La trasformazione isobara
16. La trasformazione adiabatica
65. La trasformazione isoentalpica
83. Confronto fra i processi isotermici e i processi isoentropici
2. Trasformazioni isocore e trasformazioni isobare: considerazioni sugli scambi energetici
4. Trasformazioni isoterme e trasformazioni adiabatiche: considerazioni sugli scambi energetici
74. Efficienza di un compressore commerciale - Episodio 1
75. Efficienza di un compressore commerciale - Episodio 2
76. Lavoro massimo ottenibile dall'aria compressa
91. Energia potenziale meccanica di un gas
5. Il ciclo di Carnot
12. Il trasferimento del calore
6. Il rigeneratore di calore
7. Il rigeneratore di calore - Parte seconda
28. Il rigeneratore di calore: basi teoriche
29. Dimensionamento del rigeneratore di calore
8. Il ciclo di Stirling
9. Efficienza del rigeneratore di calore e rendimento del ciclo di Stirling
10. Il ciclo di Brayton
11. Ciclo di Brayton: considerazioni su rendimento e lavoro utile
17. Il motore di Cayley free piston - Episodio 01
18. Il motore di Cayley free piston - Episodio 02
19. Il motore di Cayley free piston - Episodio 03
20. Il motore di Cayley free piston - Episodio 04
21. Il motore di Cayley free piston - Episodio 05
22. Il motore di Cayley free piston - Episodio 06
23. Il motore di Manson free piston - Episodio 07
24. Il motore di Manson free piston - Episodio 08
25. Il motore di Manson free piston - Episodio 09
27. Efficienza del rigeneratore e rendimento del motore di Manson
31. Il motore di Manson free piston - Episodio 10
32. Il motore di Manson free piston - Episodio 11
33. Il motore di Manson free piston a doppio effetto
34. Il motore di Manson LTD
35. Stufa con recupero termico
37. Il motore di Cayley free piston a doppio effetto
38. Il motore di Cayley free piston a doppio effetto - Seconda versione
39. Motore di Cayley e motore di Manson: considerazioni laterali
85. Falsi motori

III. DALL'ACQUA AL VAPORE
36. L'heat pipe
40. La tensione di vapore dell'acqua
41. Gli scambi termici dell'acqua liquida
42. Gli scambi termici nella vaporizzazione dell'acqua
43. Gli scambi termici dell'acqua a pressione costante
44. Cp dell'acqua vaporizzata: considerazioni laterali
45. La densità dell'acqua
46. Densità del vapore acqueo: considerazioni laterali
47. Il ciclo isobaro-isocoro del vapore
48. Entalpia ed energia interna
49. L'espansione adiabatica del vapore saturo - Episodio 01
50. L'espansione adiabatica del vapore saturo - Episodio 02
51. Il ciclo Rankine del vapore saturo
52. Il ciclo Rankine del vapore surriscaldato
53. L'espansione adiabatica del vapore nel diagramma di Mollier
54. Il Colibrì
55. Raccolta di link sui motori Uniflow
56. Motore a vapore con distributore a cassetto
58. Colibrì free piston a doppio effetto di tipo A
59. Colibrì free piston a doppio effetto di tipo B
60. Il ciclo termodinamico del Colibrì
61. Il Colibrì a vapore
62. Il lavoro di pompaggio nel Colibrì a vapore
63. Colibrì Vs Uniflow Vs Rankine
64. Colibrì Vs Uniflow Vs Rankine: considerazioni laterali
66. La trasformazione isoentalpica del vapore
67. Energia potenziale meccanica dei gas
68. Energia potenziale meccanica dei gas - Seconda Parte
69. L'energia potenziale meccanica del vapore saturo
70. Efficienza termomeccanica del vapore saturo
71. Efficienza termomeccanica del vapore surriscaldato
72. Colibrì monoeffetto biellato - Episodio 1
73. Colibrì monoeffetto biellato - Episodio 2
77. Colibrì monoeffetto biellato - Episodio 3
86. Il Colibrì è in realtà un leone
88. Ricerche sull'anteriorità del lion-Powerblock
89. The Una-flow Steam-engine (1912)
92. Colibrì monoeffetto biellato - Episodio 4
93. The Una-flow Steam-engine - Capitolo I
94. Colibrì monoeffetto biellato - Episodio 5
97. Il Colibrì – Descrizione dell’Idea
98. Il Colibrì – Contesto Commerciale
99. Il Colibrì – La Tecnologia - PARTE I
100. Il Colibrì – La Tecnologia - PARTE II
101. Il Colibrì – La Tecnologia - PARTE III
102. Il Colibrì – La Tecnologia - PARTE IV
103. Il Colibrì – La Tecnologia - PARTE V
104. Il Colibrì – Campi di Applicazione
105. Il Colibrì – Punti di Forza
106. Il Colibrì – Svantaggi

IV. RICERCA DI FRONTIERA
57. Considerazioni economiche sull'E-cat di Andrea Rossi
78. Dal compressore elettrochimico al catodo cavo di Arata/Celani
84. Il mondo non viene assimilato; viene fatto - Sir Karl Raimund Popper (1902 - 1994)
87. Speculazioni, azzardi e previsioni sulla fusione fredda
96. E-Cat e dintorni
107. E-Cat e dintorni
109. La ganascia termica nella generazione di calore anomalo - Introduzione
110. La ganascia termica nella generazione di calore anomalo - Il ciclo operativo
111. La ganascia termica nella generazione di calore anomalo - Contributo al COP delle varie fasi del ciclo
112. La ganascia termica nella generazione di calore anomalo - Sulla termodinamica e sulla cinetica
113. La ganascia termica nella generazione di calore anomalo - Sui requisiti termici e sulle tempistiche
114. La ganascia termica nella generazione di calore anomalo - Sull’importanza del rapporto fra la superficie e il volume del metallo
115. La ganascia termica nella generazione di calore anomalo - Sulle critiche al COP>2 e alla perdita di controllo della reazione
116. Teoria per l'unificazione della materia e della radiazione
117. Considerazioni laterali sulla radiazione elettromagnetica
118. Il propulsore fotonico
119. Materia e radiazione elettromagnetica: consigli per la ricerca
120. Scienza Laterale e Spazionica uniti nella ricerca
121. Dalla relazione di Einstein alla massa radiante
122. Considerazioni sulla relazione di Einstein
123. Fusione nucleare calda o fusione nucleare fredda?
124. Hot nuclear fusion or cold nuclear fusion?
125. Stima del cammino libero medio
126. Mean free path evaluation
127. Dematerializzazione
128. Dematerialisation
129. Carica elettrica relativistica
130. Relativistic electric charge
131. Ragionamenti sulla carica elettrica relativistica
132. Reasoning on the relativistic electric charge
133. Conduzione elettrica nei gas
134. Electric flow in gases
135. Caricamento dell'idrogeno sui metalli