Commenti Recenti

martedì 6 giugno 2017

Electric flow in gases

Nessun commento:
The current flow between two metal electrodes immersed in a gas occurs by the ionization of the gas particles acting as charge carriers. The ionized gas particles by the capture of an electron (negative ions) travel from the electrode with negative polarity to that with positive polarity, those ionized by the loss of an electron (positive ions) travel in the opposite direction.
It should be noted that a variation of charge carriers occurs in the conduction process between the metal electrodes and the gas interface. While in the metal the electric current flow is given by electrons, in gas the charge carriers are its ions.
The discharge voltage, ie the voltage to which the conduction is triggered by spark, depends on distance between the electrodes (the greater the distance, the greater the voltage required to trigger the conduction), on pressure, on temperature and on gas type. Experimentally, it is demonstrated that the dependence of the discharge voltage passes for a minimum value at a certain pressure and then rises to very high values ​​for pressures tending to zero ie to approaching the absolute vacuum. Absolute vacuum condition is an extreme situation where the current passage between two metal electrodes can occur only if electrons disengage from the electrode with negative polarity and travel to the other electrode with positive polarity. It should be noted that what is written is true only if the phenomenon of thermoelectric emission is absent or negligible.
Hydrogen is a chemical element that under normal conditions is a biatomic molecule. In the molecule, two hydrogen atoms are joined together in a stable structure composed of two protons and two electrons. The bond that joins the two atoms may break under certain conditions, resulting in the formation of two identical hydrogen atoms made of a single proton and a single electron. This type of structure, that is, the hydrogen atom, is the simplest atomic structure existing in our universe.
Now, if an hydrogen atom acquires an electron, it turns into a H- ion, an entity that, while not being neutral, is still atomic in the sense that it is constituted by a positive nucleus surrounded by a negative electronic cloud. Speaking of size, although it increase, it changes slightly.
Instead, if an hydrogen atom loses an electron transforming into an H+ ion and it becomes an atom without electronic cloud (it becomes a nucleus which in this case is a proton) and therefore no longer belongs to the entities of atomic type and its size collapses in several orders of magnitude (about 30,000 times smaller).

lunedì 23 gennaio 2017

Conduzione elettrica nei gas

Nessun commento:
Il passaggio di corrente fra due elettrodi metallici immersi in un gas avviene grazie alla ionizzazione delle particelle di gas che fungono da portatori di carica. Le particelle di gas ionizzate per acquisizione di un elettrone (ioni negativi) viaggiano dall’elettrodo con polarità negativa a quello con polarità positiva, quelle ionizzate per perdita di un elettrone (ioni positivi) viaggiano in direzione opposta.
Si osservi che nel processo di conduzione all’interfaccia fra gli elettrodi metallici e il gas avviene una variazione dei portatori di carica. Mentre nel metallo sono gli elettroni a trasferire la carica e a far passare la corrente elettrica, nel gas i portatori di carica sono i suoi ioni.
La tensione di scarica, cioè la tensione a cui si innesca la conduzione tramite scintilla, dipende dalla distanza fra gli elettrodi (maggiore la distanza, maggiore la tensione necessaria per innescare la conduzione ), dalla pressione, dalla temperatura e dal tipo di gas. Sperimentalmente si riscontra che la dipendenza della tensione di scarica passa per un valore minimo a una certa pressione per poi salire a valori molto elevati per pressioni tendenti a zero cioè all’approssimarsi al vuoto assoluto. La condizione di vuoto assoluto è una situazione estrema in cui il passaggio di corrente fra due elettrodi metallici può avvenire soltanto se degli elettroni si staccano dall’elettrodo con polarità negativa e viaggiano fino all’altro elettrodo con polarità positiva. Si fa notare che quanto scritto è vero solo se il fenomeno dell’emissione termoelettronica è assente o trascurabile.
L’idrogeno è un elemento chimico che in condizioni normali si presenta come molecola biatomica. Nella molecola due atomi di idrogeno sono uniti fra loro in una struttura stabile composta da due protoni e da due elettroni. Il legame che unisce i due atomi in alcune condizioni può rompersi dando luogo alla formazione di due atomi di idrogeno identici formati da un solo protone e da un solo elettrone. Questo tipo di struttura, cioè l’atomo di idrogeno, è la più semplice struttura atomica esistente nel nostro universo.
Ora, se un atomo di idrogeno acquisisce un elettrone si trasforma in uno ione H-, un’entità che pur non essendo neutra è ancora di tipo atomico nel senso che è costituita da un nucleo positivo circondato da una nuvola elettronica negativa. Parlando di dimensioni, pur aumentando cambiano in modo contenuto.
Invece, se un atomo di idrogeno perde un elettrone trasformandosi in uno ione H+ diventa un atomo privo di nuvola elettronica ovvero un nucleo (che in questo caso è un protone) e pertanto non appartiene più alle entità di tipo atomico e le sue dimensioni collassano di diversi ordini di grandezza (circa 30˙000 volte più piccolo).

INDICE DEI CONTENUTI

I. GENERAZIONE DI ENERGIA ELETTRICA
30. Considerazioni sulla generazione elettrica
90. Analisi economica sulla cogenerazione domestica
26. L'alternatore lineare

II. GAS IDEALI: DALLE TRASFORMAZIONI AI MOTORI
1. L'equazione di stato dei gas perfetti: istruzioni per l'uso
3. P·V=n·R·T: considerazioni laterali
13. La trasformazione isocora
14. La trasformazione isoterma
15. La trasformazione isobara
16. La trasformazione adiabatica
65. La trasformazione isoentalpica
83. Confronto fra i processi isotermici e i processi isoentropici
2. Trasformazioni isocore e trasformazioni isobare: considerazioni sugli scambi energetici
4. Trasformazioni isoterme e trasformazioni adiabatiche: considerazioni sugli scambi energetici
74. Efficienza di un compressore commerciale - Episodio 1
75. Efficienza di un compressore commerciale - Episodio 2
76. Lavoro massimo ottenibile dall'aria compressa
91. Energia potenziale meccanica di un gas
5. Il ciclo di Carnot
12. Il trasferimento del calore
6. Il rigeneratore di calore
7. Il rigeneratore di calore - Parte seconda
28. Il rigeneratore di calore: basi teoriche
29. Dimensionamento del rigeneratore di calore
8. Il ciclo di Stirling
9. Efficienza del rigeneratore di calore e rendimento del ciclo di Stirling
10. Il ciclo di Brayton
11. Ciclo di Brayton: considerazioni su rendimento e lavoro utile
17. Il motore di Cayley free piston - Episodio 01
18. Il motore di Cayley free piston - Episodio 02
19. Il motore di Cayley free piston - Episodio 03
20. Il motore di Cayley free piston - Episodio 04
21. Il motore di Cayley free piston - Episodio 05
22. Il motore di Cayley free piston - Episodio 06
23. Il motore di Manson free piston - Episodio 07
24. Il motore di Manson free piston - Episodio 08
25. Il motore di Manson free piston - Episodio 09
27. Efficienza del rigeneratore e rendimento del motore di Manson
31. Il motore di Manson free piston - Episodio 10
32. Il motore di Manson free piston - Episodio 11
33. Il motore di Manson free piston a doppio effetto
34. Il motore di Manson LTD
35. Stufa con recupero termico
37. Il motore di Cayley free piston a doppio effetto
38. Il motore di Cayley free piston a doppio effetto - Seconda versione
39. Motore di Cayley e motore di Manson: considerazioni laterali
85. Falsi motori

III. DALL'ACQUA AL VAPORE
36. L'heat pipe
40. La tensione di vapore dell'acqua
41. Gli scambi termici dell'acqua liquida
42. Gli scambi termici nella vaporizzazione dell'acqua
43. Gli scambi termici dell'acqua a pressione costante
44. Cp dell'acqua vaporizzata: considerazioni laterali
45. La densità dell'acqua
46. Densità del vapore acqueo: considerazioni laterali
47. Il ciclo isobaro-isocoro del vapore
48. Entalpia ed energia interna
49. L'espansione adiabatica del vapore saturo - Episodio 01
50. L'espansione adiabatica del vapore saturo - Episodio 02
51. Il ciclo Rankine del vapore saturo
52. Il ciclo Rankine del vapore surriscaldato
53. L'espansione adiabatica del vapore nel diagramma di Mollier
54. Il Colibrì
55. Raccolta di link sui motori Uniflow
56. Motore a vapore con distributore a cassetto
58. Colibrì free piston a doppio effetto di tipo A
59. Colibrì free piston a doppio effetto di tipo B
60. Il ciclo termodinamico del Colibrì
61. Il Colibrì a vapore
62. Il lavoro di pompaggio nel Colibrì a vapore
63. Colibrì Vs Uniflow Vs Rankine
64. Colibrì Vs Uniflow Vs Rankine: considerazioni laterali
66. La trasformazione isoentalpica del vapore
67. Energia potenziale meccanica dei gas
68. Energia potenziale meccanica dei gas - Seconda Parte
69. L'energia potenziale meccanica del vapore saturo
70. Efficienza termomeccanica del vapore saturo
71. Efficienza termomeccanica del vapore surriscaldato
72. Colibrì monoeffetto biellato - Episodio 1
73. Colibrì monoeffetto biellato - Episodio 2
77. Colibrì monoeffetto biellato - Episodio 3
86. Il Colibrì è in realtà un leone
88. Ricerche sull'anteriorità del lion-Powerblock
89. The Una-flow Steam-engine (1912)
92. Colibrì monoeffetto biellato - Episodio 4
93. The Una-flow Steam-engine - Capitolo I
94. Colibrì monoeffetto biellato - Episodio 5
97. Il Colibrì – Descrizione dell’Idea
98. Il Colibrì – Contesto Commerciale
99. Il Colibrì – La Tecnologia - PARTE I
100. Il Colibrì – La Tecnologia - PARTE II
101. Il Colibrì – La Tecnologia - PARTE III
102. Il Colibrì – La Tecnologia - PARTE IV
103. Il Colibrì – La Tecnologia - PARTE V
104. Il Colibrì – Campi di Applicazione
105. Il Colibrì – Punti di Forza
106. Il Colibrì – Svantaggi

IV. RICERCA DI FRONTIERA
57. Considerazioni economiche sull'E-cat di Andrea Rossi
78. Dal compressore elettrochimico al catodo cavo di Arata/Celani
84. Il mondo non viene assimilato; viene fatto - Sir Karl Raimund Popper (1902 - 1994)
87. Speculazioni, azzardi e previsioni sulla fusione fredda
96. E-Cat e dintorni
107. E-Cat e dintorni
109. La ganascia termica nella generazione di calore anomalo - Introduzione
110. La ganascia termica nella generazione di calore anomalo - Il ciclo operativo
111. La ganascia termica nella generazione di calore anomalo - Contributo al COP delle varie fasi del ciclo
112. La ganascia termica nella generazione di calore anomalo - Sulla termodinamica e sulla cinetica
113. La ganascia termica nella generazione di calore anomalo - Sui requisiti termici e sulle tempistiche
114. La ganascia termica nella generazione di calore anomalo - Sull’importanza del rapporto fra la superficie e il volume del metallo
115. La ganascia termica nella generazione di calore anomalo - Sulle critiche al COP>2 e alla perdita di controllo della reazione
116. Teoria per l'unificazione della materia e della radiazione
117. Considerazioni laterali sulla radiazione elettromagnetica
118. Il propulsore fotonico
119. Materia e radiazione elettromagnetica: consigli per la ricerca
120. Scienza Laterale e Spazionica uniti nella ricerca
121. Dalla relazione di Einstein alla massa radiante
122. Considerazioni sulla relazione di Einstein
123. Fusione nucleare calda o fusione nucleare fredda?
124. Hot nuclear fusion or cold nuclear fusion?
125. Stima del cammino libero medio
126. Mean free path evaluation
127. Dematerializzazione
128. Dematerialisation
129. Carica elettrica relativistica
130. Relativistic electric charge
131. Ragionamenti sulla carica elettrica relativistica
132. Reasoning on the relativistic electric charge
133. Conduzione elettrica nei gas
134. Electric flow in gases