Commenti Recenti

venerdì 16 dicembre 2016

Relativistic electric charge

A particle of mass m with electric charge q0 has an acceleration a if subjected to the action of an electrostatic field E. The equations for the force F related to the other physical quantities are

F = m·a = q0·E

While in classic conditions the mass is constant, it is commonly accepted that in relativistic conditions (velocity v close to speed of light c) the mass of the particle is no longer a constant but it depends on the rest mass m0 multiplied by a factor dependent on the speed (Einstein's relation for the relativistic mass):



Note that this equation estimates a mass value tending to infinity when the speed tend to the speed of light.

In the article titled “From the Einstein relation to the radiant mass” the radiant mass mv concept was introduced. The concept is summarized in the following relationship:

mv = m0/(1 - ½·v²/c²)

Unlike the Einstein relationship, this equation allows to calculate that the value of the radiant mass, ie the mass which travels at the speed of light, is exactly equal to twice the value of the rest mass.
Introducing the possibility that the electric charge can depend on the speed (as the mass) opens a series of very interesting considerations.
Essentially we had to accept that the electric charge relativistic qr can take this form

qr = f(v) · q0

where f(v) is a function of the speed and it is reasonable and convenient to think that it is equal to 1 when the speed is zero (classical extreme) and 0 when the speed is equal to c (relativistic extreme).
Taking into account the equation for the force, the Einstein relation for the relativistic mass and the equation for the radiant mass the function f(v) takes this form



It is easy to verify that the equation assumes unit value at v=0 and zero value for v=c as desired. The following graph shows the trend of the relativistic electric charge as function of speed


Note that up to a speed equal to 30% of that of light (v/c=0.3) the difference between the value of the relativistic electric charge qr and the rest charge q0 is extremely small (qr/q0≈1).

The introduction of the relativistic charge allows first of all to explain in a classical way why mass seems to stretch to infinity when approaching the speed of light.
Since the acceleration is equal to the ratio between strength and mass and since the force is equal to the product of the electric field by the electric charge, in the assumption of constant electric charge and therefore constant force, the decrease of the acceleration in constant electric field could be explained only by a mass increase.
Now, having opened the possibility that the electric charge depends on the speed, the electrical force becomes weaker and weaker as the speed increases because the electric charge tends to fade. Therefore it is no longer necessary to say that the mass tends to infinity to justify an acceleration tending to zero.
Furthermore, since the electric charge is canceled at the speed of light, it is impossible to cause further acceleration because the force is zero. In this way it is explained why the speed of light is an insurmountable limit.
In addition to this, it should be noted that the cancellation of the charge when the speed of light has reached makes more acceptable and credible the possibility that the matter traveling at the speed of light is completely converted to electromagnetic radiation as it is respected the neutral electric charge of photons.
An experiment that could resolve the doubts and bring confirmations to the relativistic electric charge is to verify if the electron may or may not be to an energy greater than 511keV.
Based on the above, this energy is the threshold value for the electron. The electron can not be accelerated further as at this energy it reaches the speed of light and its electrical charge should cancel. In this hypothetical condition the electron should be effectively a photon at 1022keV (in which half of the energy comes from the rest mass and the other half was provided accelerating it). If this is real, it is no longer possible to slow it down by means of an opposite electric field restoring a state of electron with speed near to the speed of light and it would be the first experimental demonstration that matter can really convert to electromagnetic radiation.

Nessun commento:

Posta un commento

Puoi scrivere qui eventuali richieste di chiarimenti, perplessità o il tuo parere su quanto esposto / Please, write here questions, doubts or your opinion on the post

INDICE DEI CONTENUTI

I. GENERAZIONE DI ENERGIA ELETTRICA
30. Considerazioni sulla generazione elettrica
90. Analisi economica sulla cogenerazione domestica
26. L'alternatore lineare

II. GAS IDEALI: DALLE TRASFORMAZIONI AI MOTORI
1. L'equazione di stato dei gas perfetti: istruzioni per l'uso
3. P·V=n·R·T: considerazioni laterali
13. La trasformazione isocora
14. La trasformazione isoterma
15. La trasformazione isobara
16. La trasformazione adiabatica
65. La trasformazione isoentalpica
83. Confronto fra i processi isotermici e i processi isoentropici
2. Trasformazioni isocore e trasformazioni isobare: considerazioni sugli scambi energetici
4. Trasformazioni isoterme e trasformazioni adiabatiche: considerazioni sugli scambi energetici
74. Efficienza di un compressore commerciale - Episodio 1
75. Efficienza di un compressore commerciale - Episodio 2
76. Lavoro massimo ottenibile dall'aria compressa
91. Energia potenziale meccanica di un gas
5. Il ciclo di Carnot
12. Il trasferimento del calore
6. Il rigeneratore di calore
7. Il rigeneratore di calore - Parte seconda
28. Il rigeneratore di calore: basi teoriche
29. Dimensionamento del rigeneratore di calore
8. Il ciclo di Stirling
9. Efficienza del rigeneratore di calore e rendimento del ciclo di Stirling
10. Il ciclo di Brayton
11. Ciclo di Brayton: considerazioni su rendimento e lavoro utile
17. Il motore di Cayley free piston - Episodio 01
18. Il motore di Cayley free piston - Episodio 02
19. Il motore di Cayley free piston - Episodio 03
20. Il motore di Cayley free piston - Episodio 04
21. Il motore di Cayley free piston - Episodio 05
22. Il motore di Cayley free piston - Episodio 06
23. Il motore di Manson free piston - Episodio 07
24. Il motore di Manson free piston - Episodio 08
25. Il motore di Manson free piston - Episodio 09
27. Efficienza del rigeneratore e rendimento del motore di Manson
31. Il motore di Manson free piston - Episodio 10
32. Il motore di Manson free piston - Episodio 11
33. Il motore di Manson free piston a doppio effetto
34. Il motore di Manson LTD
35. Stufa con recupero termico
37. Il motore di Cayley free piston a doppio effetto
38. Il motore di Cayley free piston a doppio effetto - Seconda versione
39. Motore di Cayley e motore di Manson: considerazioni laterali
85. Falsi motori

III. DALL'ACQUA AL VAPORE
36. L'heat pipe
40. La tensione di vapore dell'acqua
41. Gli scambi termici dell'acqua liquida
42. Gli scambi termici nella vaporizzazione dell'acqua
43. Gli scambi termici dell'acqua a pressione costante
44. Cp dell'acqua vaporizzata: considerazioni laterali
45. La densità dell'acqua
46. Densità del vapore acqueo: considerazioni laterali
47. Il ciclo isobaro-isocoro del vapore
48. Entalpia ed energia interna
49. L'espansione adiabatica del vapore saturo - Episodio 01
50. L'espansione adiabatica del vapore saturo - Episodio 02
51. Il ciclo Rankine del vapore saturo
52. Il ciclo Rankine del vapore surriscaldato
53. L'espansione adiabatica del vapore nel diagramma di Mollier
54. Il Colibrì
55. Raccolta di link sui motori Uniflow
56. Motore a vapore con distributore a cassetto
58. Colibrì free piston a doppio effetto di tipo A
59. Colibrì free piston a doppio effetto di tipo B
60. Il ciclo termodinamico del Colibrì
61. Il Colibrì a vapore
62. Il lavoro di pompaggio nel Colibrì a vapore
63. Colibrì Vs Uniflow Vs Rankine
64. Colibrì Vs Uniflow Vs Rankine: considerazioni laterali
66. La trasformazione isoentalpica del vapore
67. Energia potenziale meccanica dei gas
68. Energia potenziale meccanica dei gas - Seconda Parte
69. L'energia potenziale meccanica del vapore saturo
70. Efficienza termomeccanica del vapore saturo
71. Efficienza termomeccanica del vapore surriscaldato
72. Colibrì monoeffetto biellato - Episodio 1
73. Colibrì monoeffetto biellato - Episodio 2
77. Colibrì monoeffetto biellato - Episodio 3
86. Il Colibrì è in realtà un leone
88. Ricerche sull'anteriorità del lion-Powerblock
89. The Una-flow Steam-engine (1912)
92. Colibrì monoeffetto biellato - Episodio 4
93. The Una-flow Steam-engine - Capitolo I
94. Colibrì monoeffetto biellato - Episodio 5
97. Il Colibrì – Descrizione dell’Idea
98. Il Colibrì – Contesto Commerciale
99. Il Colibrì – La Tecnologia - PARTE I
100. Il Colibrì – La Tecnologia - PARTE II
101. Il Colibrì – La Tecnologia - PARTE III
102. Il Colibrì – La Tecnologia - PARTE IV
103. Il Colibrì – La Tecnologia - PARTE V
104. Il Colibrì – Campi di Applicazione
105. Il Colibrì – Punti di Forza
106. Il Colibrì – Svantaggi

IV. RICERCA DI FRONTIERA
57. Considerazioni economiche sull'E-cat di Andrea Rossi
78. Dal compressore elettrochimico al catodo cavo di Arata/Celani
84. Il mondo non viene assimilato; viene fatto - Sir Karl Raimund Popper (1902 - 1994)
87. Speculazioni, azzardi e previsioni sulla fusione fredda
96. E-Cat e dintorni
107. E-Cat e dintorni
109. La ganascia termica nella generazione di calore anomalo - Introduzione
110. La ganascia termica nella generazione di calore anomalo - Il ciclo operativo
111. La ganascia termica nella generazione di calore anomalo - Contributo al COP delle varie fasi del ciclo
112. La ganascia termica nella generazione di calore anomalo - Sulla termodinamica e sulla cinetica
113. La ganascia termica nella generazione di calore anomalo - Sui requisiti termici e sulle tempistiche
114. La ganascia termica nella generazione di calore anomalo - Sull’importanza del rapporto fra la superficie e il volume del metallo
115. La ganascia termica nella generazione di calore anomalo - Sulle critiche al COP>2 e alla perdita di controllo della reazione
116. Teoria per l'unificazione della materia e della radiazione
117. Considerazioni laterali sulla radiazione elettromagnetica
118. Il propulsore fotonico
119. Materia e radiazione elettromagnetica: consigli per la ricerca
120. Scienza Laterale e Spazionica uniti nella ricerca
121. Dalla relazione di Einstein alla massa radiante
122. Considerazioni sulla relazione di Einstein
123. Fusione nucleare calda o fusione nucleare fredda?
124. Hot nuclear fusion or cold nuclear fusion?
125. Stima del cammino libero medio
126. Mean free path evaluation
127. Dematerializzazione
128. Dematerialisation
129. Carica elettrica relativistica
130. Relativistic electric charge
131. Ragionamenti sulla carica elettrica relativistica
132. Reasoning on the relativistic electric charge
133. Conduzione elettrica nei gas
134. Electric flow in gases
135. Caricamento dell'idrogeno sui metalli