The Una-flow Steam-engine - Capitolo I

Traduzione in italiano del Capitolo I
"Le caratteristiche termiche e costruttive generali del motore a vapore una-flow"


Prefazione e indice dei contenuti

Come indica il nome, l'energia del vapore nel caso del motore “una-flow” o “unidirezionale” è estratta senza forzare il ritorno del vapore sul suo percorso, cioè è come dire che il vapore si muove sempre in una direzione attraverso il cilindro. Come mostrato in fig.1, il vapore di alimentazione entra da sotto nel coperchio cavo, riscalda le superfici del coperchio e poi dalla valvola situata nella parte superiore del coperchio passa nel cilindro; il vapore segue il pistone cedendogli la sua energia e dopo che è stato espanso, fuoriesce, alla fine della corsa del pistone, attraverso le luci di scarico disposte al centro del cilindro e controllate dal pistone. Diversamente, nei motori a vapore ordinari il vapore ha un'azione controcorrente, che è come dire che entra nella testa del cilindro, segue il pistone durante la sua corsa di lavoro, e poi torna con il pistone nella sua corsa di ritorno per scaricarsi attraverso le valvole che si aprono in prossimità della testa del cilindro. Il contro flusso o inversione del vapore di scarico provoca un notevole raffreddamento delle superfici di lavaggio a causa del loro contatto con il vapore di scarico umido. Questa azione di raffreddamento comporta una notevole condensazione iniziale quando il vapore della caldaia vapore viene nuovamente immesso al cilindro per la successiva corsa di lavoro. Nel motore una-flow, tutte le superfici di raffreddamento sono quasi completamente evitate e quindi le condensazioni nel cilindro sono in gran parte eliminate come anche la necessità di impiegare diverse fasi di espansione. I motori una-flow possono pertanto essere realizzati con una singola fase di espansione, mentre il consumo di vapore non supera quello dei motori a vapore composti e quello dei motori a vapore a triplice espansione.


Eliminando tutti i raffreddamenti delle superfici lambite dallo scarico del vapore si ottiene un
effetto simile a quello ottenuto con il surriscaldamento. Nei motori ordinari, il surriscaldamento è impiegato per superare le difficoltà sopra menzionate causate dal raffreddamento delle superfici di lavaggio. Se ora questo raffreddamento viene evitato sembrerebbe superflua la necessità del surriscaldamento del vapore.

L'uso di un anello di luci o fessure di scarico nel cilindro consente di ottenere una zona di passaggio dello scarico tre volte più grande di quello ottenuto dall'uso del cassetto o altri tipi di valvole. Il risultato di questa grande sezione di scarico è che la pressione finale nel cilindro è quella del condensatore, in particolare quando viene evitato l'impiego di tubi di collegamento lunghi e stretti tra il condensatore e il cilindro. In altre parole, se il condensatore è disposto vicino al cilindro e il passaggio di scarico ha una grande sezione trasversale, è possibile portare la pressione del cilindro fino a quella del condensatore. Al fine di formare una corretta idea delle dimensioni delle luci di scarico, si dovrebbe immaginare una valvola a pistone delle stesse dimensioni del pistone di lavoro ed un corpo valvola della stessa dimensione del cilindro di lavoro e il pistone viene spostato da un eccentrico avente la stessa escursione della manovella del motore. Mediamente, lo scarico avviene dopo 9/10 della spinta e di conseguenza la compressione inizia dopo che 1/10 della corsa di ritorno è stato completato, o in altre parole, la compressione si estende per 9/10 della corsa.

Risulta evidente che, sostituendo la consueta valvola di scarico con le porte di scarico o fessure nel cilindro, tutte le perdite di dispersione sulla valvola di scarico e tutti i volumi morti e le superfici di lavaggio, che necessariamente derivano dalla utilizzazione di una valvola di scarico dedicata, vengono evitati.

Il diagramma indicatore (Figura 3) mostra un’adiabatica del vapore saturo per la linea di espansione e un’adiabatica del vapore surriscaldato per la linea di compressione.


Questa è la migliore prova dell’eccellente azione termica di questo motore. L’eccessiva condensazione iniziale, in un motore ordinario a controflusso alimentato a vapore saturo, fa in modo che la linea di espansione segua approssimativamente la legge di Mariotte. Nel motore Una-flow, utilizzando vapore saturo, praticamente non c'è condensazione iniziale, così la linea di espansione risultante è necessariamente un’adiabatica e ancor più se il vapore di alimentazione viene surriscaldato.

A causa dell'espansione adiabatica, la frazione secca del vapore dopo l'espansione è molto bassa. Pertanto, nel caso di vapore avente una temperatura iniziale di 300°C e una pressione iniziale di 12atmosfere che si espande fino a una pressione finale di 0,8 atmosfere, la frazione secchezza vale 0,93, vale a dire, il vapore contiene il 7% di acqua. In realtà la temperatura del vapore al momento del cut-off rischia di essere un po' inferiore alla suddetta a causa delle perdite di calore durante il carico. Il risultato di queste inevitabili perdite di calore durante l’immissione è che l'espansione inizia ad una temperatura inferiore e termina con una frazione secca inferiore.

D'altra parte, la camicia riscaldante sul coperchio rigenera il vapore durante l'espansione. Durante l'espansione il coperchio incamiciato esercita una notevole azione di riscaldamento a causa della sostanziale differenza di temperatura tra il coperchio e il vapore, questa azione di riscaldamento viene trasmessa principalmente al vapore immediatamente a contatto con il coperchio. Il vapore che segue il pistone ha una importante caduta di temperatura e l’umidità aumenta a causa dell'espansione adiabatica. La maggiore umidità si trova quindi nello strato di vapore che segue immediatamente il pistone. Negli strati tra il pistone e il coperchio del cilindro, l'umidità diminuisce fino a che, nel caso del vapore vicino al coperchio, un surriscaldamento parziale può essere presente. Immediatamente allo scarico, il vapore più umido viene espulso attraverso l'anello di luci di scarico nelle pareti del cilindro. Il vapore che ha ricevuto calore durante l'intero periodo di espansione e scarico ed è stato sottoposto all'azione della differenza di temperatura tra il vapore in espansione e la camicia di riscaldamento è prima intrappolato dal pistone e poi compresso, talché la compressione sarà ora approssimativamente molto vicina a quella adiabatica del vapore surriscaldato. Questa approssimazione adiabatica del vapore surriscaldato è ulteriormente assistita dal fatto che durante la prima parte della compressione, ulteriore calore viene trasmesso dal coperchio al vapore in compressione (fig. 2). Grazie alla completa rimozione di tutta l'umidità ad ogni corsa, le perdite di calore note, dovute nei normali motori alla presenza di acqua, sono evitate. Il colpo d’ariete nel cilindro è in questo modo assolutamente impossibile.

Verifiche sperimentali condotte sulla camicia di vapore in motori a triplice espansione mostrano, (I) nel caso del cilindro ad alta pressione, nessun vantaggio, (II) nel caso del cilindro di pressione intermedia, un piccolo vantaggio, e (III) nel caso del cilindro a bassa pressione, si ottiene un notevole vantaggio, nonostante le grandi perdite che derivano necessariamente dal contro-flusso del vapore nei motori ordinari. L’azione del contro-flusso comporta inevitabilmente la sottrazione di una notevole quantità di calore dalla camicia da parte del vapore scaricato al condensatore. Questo si apprezza considerando che, all’apertura della valvola di scarico, una considerevole quantità di energia pressoria nel vapore viene trasformata in energia cinetica, producendo una velocità del vapore nelle luci e nei collegamenti tra i 350 e i 400 metri al secondo. Il vapore di scarico umido striscia sulle superfici di lavaggio con questa alta velocità e deposita di acqua di condensa su queste superfici. Il risultato è che avviene inevitabilmente una notevole rievaporazione per il brusco abbassamento della pressione e per il calore presente sulle superfici di lavaggio. Il calore prelevato dal sistema di immissione del vapore ad ogni nuovo caricamento viene così rapidamente estratto durante lo scarico. Una breve considerazione vi darà una giusta idea delle condizioni antieconomiche nei motori a vapore ordinari, sia per quanto riguarda la perdita di calore nella distribuzione che per la perdita di calore dalla camicia di vapore. Va anche notato che il flusso di calore dalle pareti in un motore normale è massima nel momento più sfavorevole, cioè dal punto in cui inizia lo scarico al punto in cui inizia la compressione o approssimativamente per metà giro, perché è durante questo tempo che esiste la più grande differenza di temperatura tra il vapore e la camicia riscaldante. Durante la restante metà del tempo di un giro, il tasso di flusso termico dal rivestimento è inferiore, come lo è anche la velocità di flusso del fluido sulle superfici calde. Nonostante questi inconvenienti, i migliori risultati si ottengono incamiciando il cilindro a bassa pressione. Ciò può essere spiegato dal fatto che, nel caso del cilindro a bassa pressione, la camicia di riscaldamento funziona con la massima differenza di temperatura. Da quanto sopra segue che un’azione di riscaldamento molto efficiente deve risultare nel caso del cilindro di un motore a vapore una-flow, poiché in questo caso il riscaldamento, come nel caso del cilindro a bassa pressione di un motore a tripla espansione, lavora con la massima differenza di temperatura tra il vapore più o meno completamente espanso e il vapore vergine. Oltre a lavorare con la massima differenza di temperatura, si ricorda che nel motore una-flow, il dannoso controflusso presente nel motore normale è sostituito da un flusso unidirezionale, in modo che non una sola unità di calore viene prelevata dalla camicia di vapore dal vapore esausto che passa attraverso le luci di scarico. Il vapore di scarico, come mostrato in fig. 2, non passa mai sopra superfici incamiciate. Il vapore che viene a contatto con la parete calda del coperchio arriva al massimo fino alla zona delle luci di scarico, senza però passare attraverso queste aperture. Di conseguenza, il calore della camicia non viene mai perso. I vantaggi della camicia riscaldante sul cilindro a bassa pressione in un motore a tripla espansione devono pertanto essere ottenuti in un grado molto maggiore in un motore una-flow, perché questa nuova costruzione evita interamente le grandi perdite di calore associate all'azione contro-flusso del vapore.

In precedenza si è supposto che l’incamiciamento fosse limitato alla testata del cilindro, e non che il cilindro stesso sia incamiciato (fig. 1 e 2). È preferibile estendere l’incamiciamento al cilindro fino al punto in cui si verifica in genere il cut-off, in modo che le pareti di condensazione vengono efficacemente riscaldate da un lato dalla camicia di vapore caldo e dall'interno del cilindro dal vapore surriscaldato per compressione. Le temperature finali che possono essere ottenute saranno più chiaramente illustrate dal seguente esempio numerico. - Vapore saturo secco compresso da 0,05 atmosfere assolute a 12 atmosfere assolute, dà una temperatura finale di 807°C, secondo l’adiabatica per il vapore surriscaldato. Questo esempio mostra che per ridurre gli effetti negativi della condensazione superficiale non è necessario comprimere fino alla pressione di ingresso, ma che una compressione media è più che sufficiente. Per ridurre gli effetti negativi dello spazio di lavaggio è meglio che lo stesso sia piccolo così che la compressione cresca alla pressione iniziale, ma per pressioni basse del condensatore è per lo più impossibile ottenere uno spazio libero così piccolo da poter soddisfare questo requisito. (Vedere il capitolo IX.)
[...]

Nessun commento:

Posta un commento

Puoi scrivere qui eventuali richieste di chiarimenti, perplessità o il tuo parere su quanto esposto / Please, write here questions, doubts or your opinion on the post


Ultima pubblicazione

Experimentation summary of July-October 2021

Premise: "Cold nuclear fusion and LENR: one thousand nine hundred and ninety-nine ways not to do them" Introduction: "Exper...


I più letti dell'ultimo periodo