Analisi economica sulla cogenerazione domestica

In una caldaia cogenerativa il calore ad alta temperatura che si libera nella combustione viene parzialmente convertito in energia elettrica e in calore a temperatura più bassa ma ancora sufficiente per il riscaldamento e/o gli usi sanitari.
Si analizza in questa sede uno scenario domestico in cui il carburante bruciato è il gas naturale e l’efficienza di conversione termoelettrica è pari al 10%.
Il prezzo attuale del gas naturale per il riscaldamento e la cottura dei cibi (tariffa per i clienti privati) è pari a circa 1,00€/m³. Arrotondando per comodità il potere calorifico del gas naturale a 10kWh/m³ il prezzo dell’energia termica derivante dalla combustione del gas naturale risulta essere di 0,10Euro/kWh.
Nell’ipotesi di efficienza termoelettrica al 10%, per generare 1kWh di elettricità servono 10kWh e pertanto è necessaria la combustione di 1m³ di gas naturale.
L’assetto non cogenerativo, ovvero la mancata utilizzazione del calore residuo, comporterebbe un costo di produzione dell’energia elettrica di 1,00Euro/kWh derivante dal solo combustibile. Essendo tale valore nettamente superiore a quello offerto dal gestore nazionale che è di 0,20÷0,30Euro/kWh, risulta che la sola generazione elettrica con efficienza al 10% non è economicamente competitiva nei luoghi serviti dalla rete distributiva.
Si noti che il pareggio economico in assetto non cogenerativo viene raggiunto quando l’efficienza tocca il 33% per un costo di 0,30Euro/kWhel e il 50% per un costo elettrico di 0,20Euro/kWhel.
L’uso in assetto cogenerativo prevede l’esistenza contemporanea di un’utenza elettrica e di un’utenza termica.
Poiché la caldaia produce circa 9 parti di calore per ogni parte di energia elettrica generata, l’utilizzo ottimale si concretizza quando le due utenze sono nel rapporto di 9:1.
In una situazione reale per un ambito domestico entrambi i fabbisogni subiscono forti variazioni nel tempo e mediamente l’utenza termica domestica oscilla fra 0kW e 20kW mentre quella elettrica fra 0kW e 3kW.
Parlando di consumi giornalieri, la componente elettrica si mantiene abbastanza costante nel corso dell’anno e si assesta normalmente fra 10kWh/gg e 20kWh/gg. La componente termica invece subisce una forte influenza stagionale passando da 1-2kWh/gg per gli usi sanitari durante il periodo estivo (200gg/anno) a un valore nettamente superiore che dipende dalla superficie riscaldata in ragione di circa 1kWh/(gg·m²) nel corso della stagione invernale (150gg/anno). Il consumo giornaliero specifico e la durata del riscaldamento dipendono dalla fascia climatica e i valori riportati sono relativi al Nord Italia.
Si intuisce facilmente che l’assetto cogenerativo ha senso solo in inverno in quanto è l’unico periodo dell’anno in cui il rapporto fra le due utenze è compatibile con quello della caldaia cogenerativa.
La discontinuità della richiesta termica sul breve periodo (alcune ore) può essere livellata con l’impiego di un puffer di accumulo ad acqua calda il cui dimensionamento dipende ovviamente dall’andamento della domanda. Questo approccio rende accessibile la possibilità di pilotare la caldaia cogenerativa con inseguimento del carico elettrico almeno finché il puffer è in grado di ricevere il calore in esubero rispetto alla richiesta termica.
Un rapporto fra l’utenza termica e l’utenza elettrica mediamente superiore a 9 comporta un esubero di produzione elettrica che potrà essere venduta al gestore con scambio sul posto. Il prezzo attuale offerto dal gestore è di circa 0,10Euro/kWh.
Un rapporto fra l’utenza termica e l’utenza elettrica mediamente inferiore a 9 comporta un difetto di produzione elettrica che potrà essere compensato attingendo dalla rete del gestore.
L’esempio numerico proposto di seguito mostra che la differenza fra la bolletta energetica per un sistema con caldaia tradizionale e gestore elettrico e la bolletta energetica per un sistema con caldaia cogenerativa al 10% di efficienza termoelettrica e scambio sul posto con il gestore elettrico ammonta a poco più di 100Euro/anno. Tale stima rappresenta il risparmio annuale che si avrebbe adottando l’impianto cogenerativo ed è stata ottenuta senza tener conto di eventuali incentivi.
La modesta entità dell’importo dovrebbe far riflettere sull’importanza del confronto fra i costi di acquisto dell’impianto. A parità di altre spese (per esempio quelle derivanti dalle manutenzioni programmate e straordinarie), un incremento di 1000Euro sul prezzo di acquisto per la soluzione cogenerativa determina un tempo di rientro di una decina d’anni.
I calcoli grossolani proposti sollevano dubbi concreti sulla reale convenienza economica di un impianto cogenerativo a gas naturale con efficienza termoelettrica del 10%.

ESEMPIO NUMERICO


DATI GENERALI
Inverno
Fabbisogno termico giornaliero invernale: 150kWh/gg
Durata periodo invernale: 150gg/inverno
Fabbisogno termico invernale: 150gg/inverno·150kWh/gg = 22500kWh/inverno
Fabbisogno elettrico: 10kWh/gg (indipendente dalla stagione)
Fabbisogno elettrico invernale: 150gg/inverno·10kWh/gg = 1500kWh/inverno
Estate
Fabbisogno termico giornaliero estivo: 2kWh/gg
Durata periodo estivo: 200gg/estate
Fabbisogno termico estivo: 200gg/estate·2kWh/gg = 400kWh/estate
Fabbisogno elettrico: 10kWh/gg (indipendente dalla stagione)
Fabbisogno elettrico estivo: 200gg/estate·10kWh/gg = 2000kWh/estate

CALDAIA TRADIZIONALE E GESTORE ELETTRICO
Inverno
Consumo invernale gas naturale: 22500kWh/inverno / 10kWh/m³ = 2250m³/inverno
Controvalore consumo invernale gas naturale: 2250m³/inverno·1,00Euro/m³ = 2250Euro/inverno
Controvalore consumo elettrico invernale da gestore: 1500kWh/inverno·0,20Euro/kWh = 300Euro/inverno
Totale spesa invernale: 2550Euro/inverno
Estate
Consumo estivo gas naturale: 400kWh/estate / 10kWh/m³ = 40m³/estate
Controvalore consumo estivo gas naturale: 40m³/estate·0,10Euro/m³ = 40Euro/estate
Controvalore consumo elettrico estivo da gestore: 2000kWh/estate·0,20Euro/kWh = 400Euro/estate
Totale spesa estiva: 440Euro/estate
COMPLESSIVO
Totale spesa energetica annuale: 2990Euro/anno

CALDAIA COGENERATIVA AL 10% E SCAMBIO SUL POSTO CON GESTORE ELETTRICO
Inverno
Consumo invernale gas naturale: 22500kWh/inverno / ( 0,9·10kWh/m³ ) = 2500m³/inverno
Controvalore consumo invernale gas naturale: 2500m³/inverno·1,00Euro/m³ = 2500Euro/inverno
Produzione elettrica invernale: 0,10·150kWh/gg = 15kWh/gg
Autoconsumo: 10kWh/gg
Esubero elettrico giornaliero invernale venduto al gestore: 5kWh/gg
Esubero elettrico invernale venduto al gestore: 150gg/inverno·5kWh/gg = 750kWh/inverno
Controvalore esubero elettrico invernale: 750kWh/inverno·0,10Euro/kWh = 75Euro/inverno
Consumo elettrico giornaliero invernale da gestore: 0kWh/gg
Consumo elettrico invernale da gestore: 150gg/inverno·0kWh/gg = 0kWh/inverno
Controvalore consumo elettrico invernale da gestore: 0kWh/inverno·0,20Euro/kWh = 0Euro/inverno
Totale spesa invernale: 2425Euro/inverno
Estate
Consumo estivo gas naturale: 400kWh/estate / (0,9·10kWh/m³) = 44m³/estate
Controvalore consumo estivo gas naturale: 44m³/estate·0,10Euro/m³ = 44Euro/estate
Produzione elettrica estiva: 0,2kWh/gg
Autoconsumo: 0,2kWh/gg
Esubero elettrico giornaliero estivo venduto al gestore: 0kWh/gg
Esubero elettrico estivo venduto al gestore: 200gg/estate·0kWh/gg = 0kWh/estate
Controvalore esubero elettrico estivo: 0kWh/estate·0,10Euro/kWh = 0Euro/estate
Consumo elettrico giornaliero estivo da gestore: 9,8kWh/gg
Consumo elettrico estivo da gestore: 200gg/estate·9,8kWh/gg = 1960kWh/estate
Controvalore consumo elettrico estivo da gestore: 1960kWh/estate·0,20Euro/kWh = 392Euro/estate
Totale spesa estiva: 436Euro/estate
COMPLESSIVO
Totale spesa energetica annuale: 2861Euro/anno

***********************
Altre letture consigliate

Considerazioni sulla generazione elettrica

Nessun commento:

Posta un commento

Puoi scrivere qui eventuali richieste di chiarimenti, perplessità o il tuo parere su quanto esposto / Please, write here questions, doubts or your opinion on the post


Ultima pubblicazione

Experimentation summary of July-October 2021

Premise: "Cold nuclear fusion and LENR: one thousand nine hundred and ninety-nine ways not to do them" Introduction: "Exper...


I più letti dell'ultimo periodo